HOME WORK 3, PROBABILITY II. BROWNIAN MOTION.

1. Let B(t) be a linear Brownian motion. Show that almost surely there exists $t\geq 0$ with $D^{\ast}B(t)=0.$

2. Let B(t) be a linear Brownian motion. Find two stopping times T and S with S \leq T, $\mathbb{E}S < \infty$ and $\mathbb{E}(B(S)^2) \geq \mathbb{E}(B(T)^2).$

3. Let B(t) be a linear Brownian motion. Show that for $\sigma > 0$, the process

 $e^{\sigma B(t)-\frac{\sigma^2 t}{2}}$

is a martingale.